CXCL1/CXCL8 (GROα/IL-8) in human diabetic ketoacidosis plasma facilitates leukocyte recruitment to cerebrovascular endothelium in vitro. Academic Article uri icon

Overview

abstract

  • Diabetic ketoacidosis (DKA) in children is associated with intracranial vascular complications, possibly due to leukocyte-endothelial interactions. Our aim was to determine whether DKA-induced inflammation promoted leukocyte adhesion to activated human cerebrovascular endothelium. Plasma was obtained from children with type 1 diabetes either in acute DKA or in an insulin-controlled state (CON). Plasma concentrations of 21 inflammatory analytes were compared between groups. DKA was associated with altered circulating levels of ↑CXCL1 (GROα), ↑CXCL8 (IL-8), ↑IL-6, ↑IFNα2, and ↓CXCL10 (IP-10) compared with CON. These plasma analyte measurements were then used to create physiologically relevant cytokine mixtures (CM). Human cerebral microvascular endothelial cells (hCMEC/D3) were stimulated with either plasma (DKA-P or CON-P) or CM (DKA-CM or CON-CM) and assessed for polymorphonuclear leukocyte (PMN) adhesion. Stimulation of hCMEC/D3 with DKA-P or DKA-CM increased PMN adhesion to hCMEC/D3 under "flow" conditions. PMN adhesion to hCMEC/D3 was suppressed with neutralizing antibodies to CXCL1/CXCL8 or their hCMEC/D3 receptors CXCR1/CXCR2. DKA-P, but not DKA-CM, initiated oxidative stress in hCMEC/D3. Expression of ICAM-1, VCAM-1, and E-selectin were unaltered on hCMEC/D3 by either DKA-P or DKA-CM. In summary, DKA elicits inflammation in children associated with changes in circulating cytokines/chemokines. Increased CXCL1/CXCL8 instigated PMN adhesion to hCMEC/D3, possibly contributing to DKA-associated intracranial vascular complications.

publication date

  • March 11, 2014

Research

keywords

  • Brain
  • Chemokine CXCL1
  • Chemotaxis, Leukocyte
  • Diabetic Ketoacidosis
  • Endothelium, Vascular
  • Interleukin-8

Identity

Scopus Document Identifier

  • 84900543884

Digital Object Identifier (DOI)

  • 10.1152/ajpendo.00659.2013

PubMed ID

  • 24619879

Additional Document Info

volume

  • 306

issue

  • 9