A soluble adenylyl cyclase form targets to axonemes and rescues beat regulation in soluble adenylyl cyclase knockout mice. Academic Article uri icon

Overview

abstract

  • Ciliary beating is important for effective mucociliary clearance. Soluble adenylyl cyclase (sAC) regulates ciliary beating, and a roughly 50-kD sAC variant is expressed in axonemes. Normal human bronchial epithelial (NHBE) cells express multiple sAC splice variants: full-length sAC; variants with catalytic domain 1 (C1) deletions; and variants with partial C1. One variant, sACex5v2-ex12v2, contains two alternative splices creating new exons 5 (ex5v2) and 12 (ex12v2), encoding a roughly 45-kD protein. It is therefore similar in size to ciliary sAC. The variant increases in expression upon ciliogenesis during differentiation at the air-liquid interface. When expressed in NHBE cells, this variant was targeted to cilia. Exons 5v2-7 were important for ciliary targeting, whereas exons 2-4 prevented it. In vitro, cytoplasmic sACex2-ex12v2 (containing C1 and C2) was the only variant producing cAMP. Ciliary sACex5v2-ex12v2 was not catalytically active. Airway epithelial cells isolated from wild-type mice revealed sAC-dependent ciliary beat frequency (CBF) regulation, analogous to NHBE cells: CBF rescue from HCO3(-)/CO2-mediated intracellular acidification was sensitive to the sAC inhibitor, KH7. Compared with wild type, sAC C2 knockout (KO) mice revealed lower CBF baseline, and the HCO3(-)/CO2-mediated CBF decrease was not inhibited by KH7, confirming lack of functional sAC. Human sACex5v2-ex12v2 was targeted to cilia and sACex2-ex12v2 to the cytoplasm in these KO mice. Introduction of the ciliary sACex5v2-ex12v2 variant, but not the cytoplasmic sACex2-ex12v2, restored functional sAC activity in C2 KO mice. Thus, we show, for the first time, a mammalian axonemal targeting sequence that localizes a sAC variant to cilia to regulate CBF.

publication date

  • December 1, 2014

Research

keywords

  • Adenylyl Cyclases
  • Axoneme
  • Cilia

Identity

PubMed Central ID

  • PMC4291545

Scopus Document Identifier

  • 84918811577

Digital Object Identifier (DOI)

  • 10.1165/rcmb.2013-0542OC

PubMed ID

  • 24874272

Additional Document Info

volume

  • 51

issue

  • 6