Structural brain imaging in children and adolescents following prenatal cocaine exposure: preliminary longitudinal findings. Academic Article uri icon

Overview

abstract

  • The brain morphometry of 21 children, who were followed from birth and underwent structural brain magnetic resonance imaging at 8-10 years, was studied. This cohort included 11 children with prenatal cocaine exposure (CE) and 10 noncocaine-exposed children (NCE). We compared the CE versus NCE groups using FreeSurfer to automatically segment and quantify the volume of individual brain structures. In addition, we created a pediatric atlas specifically for this population and demonstrate the enhanced accuracy of this approach. We found an overall trend towards smaller brain volumes among CE children. The volume differences were significant for cortical gray matter, the thalamus and the putamen. Here, reductions in thalamic and putaminal volumes showed a robust inverse correlation with exposure levels, thus highlighting effects on dopamine-rich brain regions that form key components of brain circuitry known to play important roles in behavior and attention. Interestingly, head circumferences (HCs) at birth as well as at the time of imaging showed a tendency for smaller size among CE children. HCs at the time of imaging correlated well with the cortical volumes for all subjects. In contrast, HCs at birth were predictive of the cortical volume only for the CE group. A subgroup of these subjects (6 CE, 4 NCE) was also scanned at 13-15 years of age. In subjects who were scanned twice, we found that the trend for smaller structures continued into teenage years. We found that the differences in structural volumes between the CE and NCE groups are largely diminished when the HCs are controlled for or matched by study design. Participants in this study were drawn from a unique longitudinal cohort and, while the small sample size precludes strong conclusions regarding the longitudinal findings reported, the results point to reductions in HCs and in specific brain structures that persist through teenage years in children who were exposed to cocaine in utero.

publication date

  • July 1, 2014

Research

keywords

  • Brain
  • Cocaine
  • Prenatal Exposure Delayed Effects

Identity

PubMed Central ID

  • PMC4125447

Scopus Document Identifier

  • 84927586035

Digital Object Identifier (DOI)

  • 10.1159/000362685

PubMed ID

  • 24994509

Additional Document Info

volume

  • 36

issue

  • 3-4