MR imaging of hip arthroplasty implants. Review uri icon

Overview

abstract

  • Hip arthroplasty has become the standard treatment for end-stage hip disease, allowing pain relief and restoration of mobility in large numbers of patients; however, pain after hip arthroplasty occurs in as many as 40% of cases, and despite improved longevity, all implants eventually fail with time. Owing to the increasing numbers of hip arthroplasty procedures performed, the demographic factors, and the metal-on-metal arthroplasty systems with their associated risk for the development of adverse local tissue reactions to metal products, there is a growing demand for an accurate diagnosis of symptoms related to hip arthroplasty implants and for a way to monitor patients at risk. Magnetic resonance (MR) imaging has evolved into a powerful diagnostic tool for the evaluation of hip arthroplasty implants. Optimized conventional pulse sequences and metal artifact reduction techniques afford improved depiction of bone, implant-tissue interfaces, and periprosthetic soft tissue for the diagnosis of arthroplasty-related complications. Strategies for MR imaging of hip arthroplasty implants are presented, as well as the imaging appearances of common causes of painful and dysfunctional hip arthroplasty systems, including stress reactions and fractures; bone resorption and aseptic loosening; polyethylene wear-induced synovitis and osteolysis; adverse local tissue reactions to metal products; infection; heterotopic ossification; tendinopathy; neuropathy; and periprosthetic neoplasms. A checklist is provided for systematic evaluation of MR images of hip arthroplasty implants. MR imaging with optimized conventional pulse sequences and metal artifact reduction techniques is a comprehensive imaging modality for the evaluation of the hip after arthroplasty, contributing important information for diagnosis, prognosis, risk stratification, and surgical planning.

publication date

  • July 1, 2014

Research

keywords

  • Hip Prosthesis
  • Magnetic Resonance Imaging
  • Postoperative Complications

Identity

Scopus Document Identifier

  • 84904364748

Digital Object Identifier (DOI)

  • 10.1148/rg.344140010

PubMed ID

  • 25019450

Additional Document Info

volume

  • 34

issue

  • 4