Loss of BRMS1 promotes a mesenchymal phenotype through NF-κB-dependent regulation of Twist1. Academic Article uri icon

Overview

abstract

  • Breast cancer metastasis suppressor 1 (BRMS1) is downregulated in non-small cell lung cancer (NSCLC), and its reduction correlates with disease progression. Herein, we investigate the mechanisms through which loss of the BRMS1 gene contributes to epithelial-to-mesenchymal transition (EMT). Using a short hairpin RNA (shRNA) system, we show that loss of BRMS1 promotes basal and transforming growth factor beta-induced EMT in NSCLC cells. NSCLC cells expressing BRMS1 shRNAs (BRMS1 knockdown [BRMS1(KD)]) display mesenchymal characteristics, including enhanced cell migration and differential regulation of the EMT markers. Mesenchymal phenotypes observed in BRMS1(KD) cells are dependent on RelA/p65, the transcriptionally active subunit of nuclear factor kappa B (NF-κB). In addition, chromatin immunoprecipitation analysis demonstrates that loss of BRMS1 increases Twist1 promoter occupancy of RelA/p65 K310-a key histone modification associated with increased transcription. Knockdown of Twist1 results in reversal of BRMS1(KD)-mediated EMT phenotypic changes. Moreover, in our animal model, BRMS1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing lung tumors than BRMS1(KD) cells. Collectively, this study demonstrates that loss of BRMS1 promotes malignant phenotypes that are dependent on NF-κB-dependent regulation of Twist1. These observations offer fresh insight into the mechanisms through which BRMS1 regulates the development of metastases in NSCLC.

publication date

  • November 3, 2014

Research

keywords

  • Gene Expression Regulation, Neoplastic
  • Lung Neoplasms
  • NF-kappa B p50 Subunit
  • Nuclear Proteins
  • Repressor Proteins
  • Twist-Related Protein 1

Identity

PubMed Central ID

  • PMC4295387

Scopus Document Identifier

  • 84920019805

Digital Object Identifier (DOI)

  • 10.1128/MCB.00869-14

PubMed ID

  • 25368381

Additional Document Info

volume

  • 35

issue

  • 1