Role of the skin biopsy in the diagnosis of atypical hemolytic uremic syndrome. Academic Article uri icon

Overview

abstract

  • INTRODUCTION: Atypical hemolytic uremic syndrome (aHUS) is a prototypic thrombotic microangiopathy attributable to complement dysregulation. In the absence of complement inhibition, progressive clinical deterioration occurs. The authors postulated that a biopsy of normal skin could corroborate the diagnosis of aHUS through the demonstration of vascular deposits of C5b-9. MATERIALS AND METHODS: Biopsies of normal skin from 22 patients with and without aHUS were processed for routine light microscopy and immunofluorescent studies. An assessment was made for vascular C5b-9 deposition immunohistochemically and by immunofluorescence. The biopsies were obtained primarily from the forearm and/or deltoid. RESULTS: Patients with classic features of aHUS showed insidious microvascular changes including loose luminal platelet thrombi, except in 2 patients in whom a striking thrombogenic vasculopathy was apparent in biopsied digital ulcers. Extensive microvascular deposits of the membrane attack complex/C5b-9 were identified, excluding 1 patient in whom eculizumab was initiated before biopsy. In 5 of the 7 patients where follow-up was available, the patients exhibited an excellent treatment response to eculizumab. Patients without diagnostic clinical features of aHUS failed to show significant vascular deposits of complement, except 2 patients with thrombotic thrombocytopenic purpura including 1 in whom a Factor H mutation was identified. CONCLUSIONS: In a clinical setting where aHUS is an important diagnostic consideration, extensive microvascular deposition of C5b-9 supports the diagnosis of either aHUS or a subset of thrombotic thrombocytopenic purpura patients with concomitant complement dysregulation; significant vascular C5b-9 deposition predicts clinical responsiveness to eculizumab.

publication date

  • May 1, 2015

Research

keywords

  • Atypical Hemolytic Uremic Syndrome
  • Complement Membrane Attack Complex
  • Microvessels
  • Skin

Identity

PubMed Central ID

  • PMC4405909

Scopus Document Identifier

  • 84928950592

Digital Object Identifier (DOI)

  • 10.1097/DAD.0000000000000234

PubMed ID

  • 25893747

Additional Document Info

volume

  • 37

issue

  • 5