Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Academic Article uri icon

Overview

abstract

  • Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation.

publication date

  • August 21, 2015

Research

keywords

  • Polymorphism, Single Nucleotide
  • Protein Biosynthesis
  • RNA

Identity

PubMed Central ID

  • PMC4617958

Scopus Document Identifier

  • 84946571937

Digital Object Identifier (DOI)

  • 10.1101/gr.193342.115

PubMed ID

  • 26297486

Additional Document Info

volume

  • 25

issue

  • 11