The Prostaglandin Transporter: Eicosanoid Reuptake, Control of Signaling, and Development of High-Affinity Inhibitors as Drug Candidates. Review uri icon

Overview

abstract

  • We discovered the prostaglandin transporter (PGT) and cloned the human cDNA and gene. PGT transports extracellular prostaglandins (PGs) into the cytoplasm for enzymatic inactivation. PGT knockout mice have elevated prostaglandin E2 (PGE2) and neonatal patent ductus arteriosus, which reflects PGT's control over PGE2 signaling at EP1/EP4 cell-surface receptors. Interestingly, rescued PGT knockout pups have a nearly normal phenotype, as do human PGT nulls. Given the benign phenotype of PGT genetic nulls, and because PGs are useful medicines, we have approached PGT as a drug target. Triazine library screening yielded a lead compound of inhibitory constant 50% (IC50) = 3.7 μM, which we developed into a better inhibitor of IC50 378 nM. Further structural improvements have yielded 26 rationally designed derivatives with IC50 < 100 nM. The therapeutic approach of increasing endogenous PGs by inhibiting PGT offers promise in diseases such as pulmonary hypertension and obesity.

publication date

  • January 1, 2015

Research

keywords

  • Drug Design
  • Eicosanoids
  • Molecular Targeted Therapy
  • Organic Anion Transporters
  • Signal Transduction
  • Triazines

Identity

PubMed Central ID

  • PMC4530674

Scopus Document Identifier

  • 85018564910

PubMed ID

  • 26330684

Additional Document Info

volume

  • 126