Current Clinical Applications and Future Potential of Diffusion Tensor Imaging in Traumatic Brain Injury. Review uri icon

Overview

abstract

  • In the setting of acute central nervous system (CNS) emergencies, computed tomography (CT) and conventional magnetic resonance imaging (MRI) play an important role in the identification of life-threatening intracranial injury. However, the full extent or even presence of brain damage frequently escapes detection by conventional CT and MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI) are emerging as important adjuncts in the diagnosis of microstructural white matter injury in the acute and postacute brain-injured patient. Although DTI aids in detection of brain injury pathology, which has been repeatedly associated with typical adverse clinical outcomes, the evolution of acute changes and their long-term prognostic implications are less clear and the subject of much active research. A major aim of current research is to identify imaging-based biomarkers that can identify the subset of TBI patients who are at risk for adverse outcome and can therefore most benefit from ongoing care and rehabilitation as well as future therapeutic interventions.The aim of this study is to introduce the current methods used to obtain DTI in the clinical setting, describe a set of common interpretation strategies with their associated advantages and pitfalls, as well as illustrate the clinical utility of DTI through a set of specific patient scenarios. We conclude with a discussion of future potential for the management of TBI.

authors

  • Strauss, Sara
  • Hulkower, Miriam
  • Gulko, Edwin
  • Zampolin, Richard L
  • Gutman, David
  • Chitkara, Munish
  • Zughaft, Malka
  • Lipton, Michael L

publication date

  • December 1, 2015

Research

keywords

  • Brain Injuries
  • Diffusion Tensor Imaging
  • Magnetic Resonance Imaging

Identity

Scopus Document Identifier

  • 84983146223

Digital Object Identifier (DOI)

  • 10.1097/RMR.0000000000000071

PubMed ID

  • 26636640

Additional Document Info

volume

  • 24

issue

  • 6