Primary Pseudomyogenic Hemangioendothelioma of Bone. Academic Article uri icon

Overview

abstract

  • Pseudomyogenic hemangioendothelioma (PMH) is a well-recognized neoplasm that usually arises in the soft tissue; concurrent bone involvement occurs in 24% of cases. PMH of bone without soft tissue involvement is rare. We describe the clinicopathologic findings of 10 such cases, the largest series reported to date. The study included 9 male and 1 female patient; their ages ranged from 12 to 74 years (mean 36.7 y). All patients had multiple tumors with a distinct regional distribution: 45% restricted to the lower extremity; 25% to the spine and pelvis; and 15% to the upper extremity. On imaging studies the tumors were well circumscribed and lytic. The neoplasms were composed of spindled cells arranged in intersecting fascicles with scattered epithelioid cells; epithelioid cells predominated in 3 cases. The neoplastic cells contained abundant densely eosinophilic cytoplasm and vesicular nuclei. There was limited cytologic atypia and necrosis, few mitoses (0 to 2/10 high-power fields), and inconspicuous stroma. Unique findings included abundant intratumoral reactive woven bone and hemorrhage with numerous osteoclast-like giant cells. Immunohistochemically, most tumors were positive for keratin, ERG, and CD31; CD34 was negative. The balanced t(7:19)(q22;13) translocation was documented in 3 cases. Follow-up is limited, but no patient developed documented visceral dissemination, and all have stable or progressive osseous disease. PMH exclusively involving bone is rare. It is multicentric, often involves the lower extremity, and has unusual morphology. The differential diagnosis includes epithelioid vascular neoplasms, giant cell tumor, bone forming neoplasms, and metastatic carcinoma. Because of its rarity, unusual presentation, and morphology, accurate diagnosis can be challenging.

publication date

  • May 1, 2016

Research

keywords

  • Bone Neoplasms
  • Hemangioendothelioma
  • Neoplasms, Multiple Primary

Identity

Scopus Document Identifier

  • 84957900667

Digital Object Identifier (DOI)

  • 10.1097/PAS.0000000000000613

PubMed ID

  • 26872012

Additional Document Info

volume

  • 40

issue

  • 5