PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Academic Article uri icon

Overview

abstract

  • Phosphatase and tensin homolog (PTEN) is a negative regulator of the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) signaling pathway and a potent tumor suppressor in many types of cancer. To test a tumor suppressive role for PTEN in pre-B acute lymphoblastic leukemia (ALL), we induced Cre-mediated deletion of Pten in mouse models of pre-B ALL. In contrast to its role as a tumor suppressor in other cancers, loss of one or both alleles of Pten caused rapid cell death of pre-B ALL cells and was sufficient to clear transplant recipient mice of leukemia. Small-molecule inhibition of PTEN in human pre-B ALL cells resulted in hyperactivation of AKT, activation of the p53 tumor suppressor cell cycle checkpoint and cell death. Loss of PTEN function in pre-B ALL cells was functionally equivalent to acute activation of autoreactive pre-B cell receptor signaling, which engaged a deletional checkpoint for the removal of autoreactive B cells. We propose that targeted inhibition of PTEN and hyperactivation of AKT triggers a checkpoint for the elimination of autoreactive B cells and represents a new strategy to overcome drug resistance in human ALL.

publication date

  • March 14, 2016

Research

keywords

  • Drug Resistance, Neoplasm
  • PTEN Phosphohydrolase
  • Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
  • Proto-Oncogene Proteins c-akt

Identity

PubMed Central ID

  • PMC5178869

Scopus Document Identifier

  • 84961219276

Digital Object Identifier (DOI)

  • 10.1038/nm.4062

PubMed ID

  • 26974310

Additional Document Info

volume

  • 22

issue

  • 4