Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures. Academic Article uri icon

Overview

abstract

  • Postmenopausal women with vertebral fractures have abnormal bone microarchitecture at the distal radius and tibia by HR-pQCT, independent of areal BMD. However, whether trabecular plate and rod microarchitecture is altered in women with vertebral fractures is unknown. This study aims to characterize the abnormalities of trabecular plate and rod microarchitecture, cortex, and bone stiffness in postmenopausal women with vertebral fractures. HR-pQCT images of distal radius and tibia were acquired from 45 women with vertebral fractures and 45 control subjects without fractures. Trabecular and cortical compartments were separated by an automatic segmentation algorithm and subjected to individual trabecula segmentation (ITS) analysis for measuring trabecular plate and rod morphology and cortical bone evaluation for measuring cortical thickness and porosity, respectively. Whole bone and trabecular bone stiffness were estimated by finite element analysis. Fracture and control subjects did not differ according to age, race, body mass index, osteoporosis risk factors, or medication use. Women with vertebral fractures had thinner cortices, and larger trabecular area compared to the control group. By ITS analysis, fracture subjects had fewer trabecular plates, less axially aligned trabeculae and less trabecular connectivity at both the radius and the tibia. Fewer trabecular rods were observed at the radius. Whole bone stiffness and trabecular bone stiffness were 18% and 22% lower in women with vertebral fractures at the radius, and 19% and 16% lower at the tibia, compared with controls. The estimated failure load of the radius and tibia were also reduced in the fracture subjects by 13% and 14%, respectively. In summary, postmenopausal women with vertebral fractures had both trabecular and cortical microstructural deterioration at the peripheral skeleton, with a preferential loss of trabecular plates and cortical thinning. These microstructural deficits translated into lower whole bone and trabecular bone stiffness at the radius and tibia. Our results suggest that abnormalities in trabecular plate and rod microstructure may be important mechanisms of vertebral fracture in postmenopausal women.

publication date

  • April 12, 2016

Research

keywords

  • Postmenopause
  • Radius
  • Spinal Fractures
  • Tibia

Identity

PubMed Central ID

  • PMC4899124

Scopus Document Identifier

  • 84964527134

Digital Object Identifier (DOI)

  • 10.1016/j.bone.2016.04.003

PubMed ID

  • 27083398

Additional Document Info

volume

  • 88