COMT, BDNF, and DTNBP1 polymorphisms and cognitive functions in patients with brain tumors.
Academic Article
Overview
abstract
BACKGROUND: Cognitive dysfunction is common among patients with brain tumors and can be associated with the disease and treatment with radiotherapy and chemotherapy. However, little is known about genetic risk factors that may moderate the vulnerability for developing cognitive dysfunction. In this study, we examined the association of single nucleotide polymorphisms (SNPs) in the catechol-O-methyl transferase (COMT), brain-derived neurotrophic factor (BDNF), and dystrobrevin-binding protein 1 (DTNBP1) genes with cognitive functions and neuroimaging outcomes in patients with brain tumors. METHODS: One hundred and fifty patients with brain tumors completed neuropsychological tests of attention, executive functions, and memory and were genotyped for polymorphisms in the COMT, BDNF, and DTNBP1 genes. Ratings of white matter (WM) abnormalities on magnetic resonance imaging scans were performed. RESULTS: Multivariate regression shrinkage analyses, adjusted for age, education, treatment type, time since treatment completion, and tumor location, indicated a significant association between the COMT SNP rs4680 (Val158Met) and memory with lower scores in delayed recall (P < .01) among homozygotes (valine/valine). Additional COMT, BDNF and DTNBP1 SNPs were significantly associated with attention, executive functions, and memory scores. CONCLUSION: This is the first study to suggest that known and newly described polymorphisms in genes associated with executive and memory functions in healthy individuals and other clinical populations may modulate cognitive outcome in patients with brain tumors.