Sparse-SEMAC: rapid and improved SEMAC metal implant imaging using SPARSE-SENSE acceleration.
Academic Article
Overview
abstract
-
PURPOSE: To develop an accelerated SEMAC metal implant MRI technique (Sparse-SEMAC) with reduced scan time and improved metal distortion correction. METHODS: Sparse-SEMAC jointly exploits the inherent sparsity along the additional phase-encoding dimension and multicoil encoding capabilities to significantly accelerate data acquisition. A prototype pulse sequence with pseudorandom ky -kz undersampling and an inline image reconstruction was developed for integration in clinical studies. Three patients with hip implants were imaged using the proposed Sparse-SEMAC with eight-fold acceleration and compared with the standard-SEMAC technique used in clinical studies (three-fold GRAPPA acceleration). Measurements were performed with SEMAC-encoding steps (SES) = 15 for Sparse-SEMAC and SES = 9 for Standard-SEMAC using high spatial resolution Proton Density (PD) and lower-resolution STIR acquisitions. Two expert musculoskeletal (MSK) radiologists performed a consensus reading to score image-quality parameters. RESULTS: Sparse-SEMAC enables up to eight-fold acceleration of data acquisition that results in two-fold scan time reductions, compared with Standard-SEMAC, with improved metal artifact correction for patients with hip implants without degrading spatial resolution. CONCLUSION: The high acceleration enabled by Sparse-SEMAC would enable clinically feasible examination times with improved correction of metal distortion. Magn Reson Med 78:79-87, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
publication date
published in
Research
keywords
-
Algorithms
-
Artifacts
-
Image Enhancement
-
Magnetic Resonance Imaging
-
Metals
-
Prostheses and Implants
-
Signal Processing, Computer-Assisted
Identity
PubMed Central ID
Scopus Document Identifier
Digital Object Identifier (DOI)
PubMed ID
Additional Document Info
has global citation frequency
volume
issue