Hypochloremia and Diuretic Resistance in Heart Failure: Mechanistic Insights. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Recent epidemiological studies have implicated chloride, rather than sodium, as the driver of poor survival previously attributed to hyponatremia in heart failure. Accumulating basic science evidence has identified chloride as a critical factor in renal salt sensing. Our goal was to probe the physiology bridging this basic and epidemiological literature. METHODS AND RESULTS: Two heart failure cohorts were included: (1) observational: patients receiving loop diuretics at the Yale Transitional Care Center (N=162) and (2) interventional pilot: stable outpatients receiving ≥80 mg furosemide equivalents were studied before and after 3 days of 115 mmol/d supplemental lysine chloride (N=10). At the Yale Transitional Care Center, 31.5% of patients had hypochloremia (chloride ≤96 mmol/L). Plasma renin concentration correlated with serum chloride (r=-0.46; P<0.001) with no incremental contribution from serum sodium (P=0.49). Hypochloremic versus nonhypochloremic patients exhibited renal wasting of chloride (P=0.04) and of chloride relative to sodium (P=0.01), despite better renal free water excretion (urine osmolality 343±101 mOsm/kg versus 475±136; P<0.001). Hypochloremia was associated with poor diuretic response (odds ratio, 7.3; 95% confidence interval, 3.3-16.1; P<0.001). In the interventional pilot, lysine chloride supplementation was associated with an increase in serum chloride levels of 2.2±2.3 mmol/L, and the majority of participants experienced findings such as hemoconcentration, weight loss, reduction in amino terminal, pro B-type natriuretic peptide, increased plasma renin activity, and increased blood urea nitrogen to creatinine ratio. CONCLUSIONS: Hypochloremia is associated with neurohormonal activation and diuretic resistance with chloride depletion as a candidate mechanism. Sodium-free chloride supplementation was associated with increases in serum chloride and changes in several cardiorenal parameters. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02031354.

publication date

  • August 1, 2016

Research

keywords

  • Chlorides
  • Drug Resistance
  • Furosemide
  • Heart Failure
  • Kidney
  • Sodium Potassium Chloride Symporter Inhibitors

Identity

PubMed Central ID

  • PMC4988527

Scopus Document Identifier

  • 84983541251

Digital Object Identifier (DOI)

  • 10.1161/CIRCHEARTFAILURE.116.003180

PubMed ID

  • 27507113

Additional Document Info

volume

  • 9

issue

  • 8