Active engagement in a web-based tutorial to prevent obesity grounded in Fuzzy-Trace Theory predicts higher knowledge and gist comprehension.
Academic Article
Overview
abstract
We used Sharable Knowledge Objects (SKOs) to create an Intelligent Tutoring System (ITS) grounded in Fuzzy-Trace Theory to teach women about obesity prevention: GistFit, getting the gist of healthy eating and exercise. The theory predicts that reliance on gist mental representations (as opposed to verbatim) is more effective in reducing health risks and improving decision making. Technical information was translated into decision-relevant gist representations and gist principles (i.e., healthy values). The SKO was hypothesized to facilitate extracting these gist representations and principles by engaging women in dialogue, "understanding" their responses, and replying appropriately to prompt additional engagement. Participants were randomly assigned to either the obesity prevention tutorial (GistFit) or a control tutorial containing different content using the same technology. Participants were administered assessments of knowledge about nutrition and exercise, gist comprehension, gist principles, behavioral intentions and self-reported behavior. An analysis of engagement in tutorial dialogues and responses to multiple-choice questions to check understanding throughout the tutorial revealed significant correlations between these conversations and scores on subsequent knowledge tests and gist comprehension. Knowledge and comprehension measures correlated with healthier behavior and greater intentions to perform healthy behavior. Differences between GistFit and control tutorials were greater for participants who engaged more fully. Thus, results are consistent with the hypothesis that active engagement with a new gist-based ITS, rather than a passive memorization of verbatim details, was associated with an array of known psychosocial mediators of preventive health decisions, such as knowledge acquisition, and gist comprehension.