Hypertension-linked mechanical changes of rat gut. Academic Article uri icon

Overview

abstract

  • Hypertension is the most prevalent risk factor for cardiovascular disease caused by a persistent increase in arterial blood pressure that has lasting effects on the mechanical properties of affected tissues like myocardium and blood vessels. Our group recently discovered that gut dysbiosis is linked to hypertension in several animal models and humans; however, whether hypertension influences the gut's mechanical properties remains unknown. In this study, we evaluated the hypothesis that hypertension increases fibrosis and thus mechanical properties of the gut. A custom indentation system was used to test colon samples from Wistar Kyoto (WKY) normotensive rats and Spontaneously Hypertensive Rats (SHR). Using force-displacement data, we derived an steady-state modulus metric to quantify mechanical properties of gastrointestinal tissue. We observed that SHR proximal colon has a mean steady-state modulus almost 3 times greater than WKY control rat colon (5.11±1.58kPa and 18.17±11.45kPa, respectively). These increases were associated with increase in vascular smooth muscle cells layer and collagen deposition in the intestinal wall in the SHR. STATEMENT OF SIGNIFICANCE: Mechanical characterization of biological materials can provide insight into health and disease of tissue. Recent investigations into a variety of cardiovascular pathologies show coincident changes in the microbiome and pathology of the gut. In this study, we sought to quantify changes in the gut in hypertension through mechanical characterization. Our methods and simple models for characterization, adapted from Hertz indentation models, prove useful to identify a meaningful steady-state modulus metric for small and irregular tissues from laboratory animals. Our data, for the first time, establish a stiffening of the gut wall in Spontaneously Hypertensive Rats. This observation suggests significant structural and functional changes in the gut correlate with hypertension, and future experiments are warranted to explore the specific causal relationship between dysbiosis, fibrosis, and stiffening in the gut during the development and maintenance of hypertension.

publication date

  • August 24, 2016

Research

keywords

  • Gastrointestinal Tract
  • Hypertension

Identity

PubMed Central ID

  • PMC5069177

Scopus Document Identifier

  • 84992397183

Digital Object Identifier (DOI)

  • 10.1016/j.actbio.2016.08.045

PubMed ID

  • 27567964

Additional Document Info

volume

  • 45