Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Academic Article uri icon

Overview

abstract

  • Genomic analysis of tumor tissue is the standard technique for identifying DNA alterations in malignancies. Genomic analysis of circulating tumor cell-free DNA (cfDNA) represents a relatively non-invasive method of assessing genomic alterations using peripheral blood. We compared the concordance of genomic alterations between cfDNA and tissue biopsies in this retrospective study. Twenty-eight patients with advanced solid tumors with paired next-generation sequencing tissue and cfDNA biopsies were identified. Sixty-five genes were common to both assays. Concordance was defined as the presence or absence of the identical genomic alteration(s) in a single gene on both molecular platforms. Including all aberrations, the average number of alterations per patient for tissue and cfDNA analysis was 4.82 and 2.96, respectively. When eliminating alterations not detectable in the cfDNA assay, mean number of alterations for tissue and cfDNA was 3.21 and 2.96, respectively. Overall, concordance was 91.9-93.9%. However, the concordance rate decreased to 11.8-17.1% when considering only genes with reported genomic alterations in either assay. Over 50% of mutations detected in either technique were not detected using the other biopsy technique, indicating a potential complementary role of each assay. Across 5 genes (TP53, EGFR, KRAS, APC, CDKN2A), sensitivity and specificity were 59.1% and 94.8%, respectively. Potential explanations for the lack of concordance include differences in assay platform, spatial and temporal factors, tumor heterogeneity, interval treatment, subclones, and potential germline DNA contamination. These results highlight the importance of prospective studies to evaluate concordance of genomic findings between distinct platforms that ultimately may inform treatment decisions.

publication date

  • October 4, 2016

Research

keywords

  • Adenocarcinoma
  • Cell-Free Nucleic Acids
  • High-Throughput Nucleotide Sequencing
  • Lung Neoplasms
  • Mutation

Identity

PubMed Central ID

  • PMC5323161

Scopus Document Identifier

  • 84994128079

Digital Object Identifier (DOI)

  • 10.18632/oncotarget.11692

PubMed ID

  • 27588476

Additional Document Info

volume

  • 7

issue

  • 40