Interaction of the B subunit of cholera toxin with endogenous ganglioside GM1 causes changes in membrane potential of rat thymocytes. Academic Article uri icon

Overview

abstract

  • The fluorescent anionic dye, bisoxonol, and flow cytometry have been used to monitor changes in the membrane potential of rat thymocytes exposed to the B subunit of cholera toxin. The B subunit induced a rapid hyperpolarization, which was due to activation of a Ca2+-sensitive K+ channel. Reduction of extracellular Ca2+ to less than 1 microM by the addition of [ethylene-bis(oxyethylenenitrilo)]tetraacetic acid immediately abolished the hyperpolarization caused by the B subunit. Cells treated with quinine and tetraethylammonium lost their ability to respond to the B subunit, whereas 4-aminopyridine did not have any effect. Thus, calcium-sensitive and not voltage-gated K+ channels appeared to be responsible for the hyperpolarization. The results of ion substitution experiments indicated that extracellular Na+ was not essential for changes in membrane potential. Further studies with ouabain, amiloride and furosemide demonstrated that electrogenic Na+/K+ ATPase, Na+/H+ antiporter and Na+/K+/Cl- cotransporter, respectively, were not involved in the hyperpolarization process induced by the B subunit. Thus, crosslinking of several molecules of ganglioside GM1 on the cell surface of rat thymocytes by the pentavalent B subunit of cholera toxin modulated plasma membrane permeability to K+ by triggering the opening of Ca2+-sensitive K+ channels. A role for gangliosides in regulating ion permeability would have important implications for the function of gangliosides in various cellular phenomena.

publication date

  • July 1, 1989

Research

keywords

  • Calcium
  • Cholera Toxin
  • G(M1) Ganglioside
  • Thymus Gland

Identity

Scopus Document Identifier

  • 0024319031

PubMed ID

  • 2769735

Additional Document Info

volume

  • 109

issue

  • 1