Disentangling subgroups of participants recruiting shared as well as different brain regions for the execution of the verb generation task: A data-driven fMRI study. Academic Article uri icon

Overview

abstract

  • The spatial pattern of task-related brain activity in fMRI studies might be expected to change according to several variables such as handedness and age. However this spatial heterogeneity might also be due to other unmodeled sources of inter-subject variability. Since group-level results reflect patterns of task-evoked brain activity common to most of the subjects in the sample, they could conceal the presence of subgroups recruiting other brain regions beyond the common pattern. To deal with these issues, data-driven methods can be used to detect the presence of sources of inter-subject variability that might be hard to identify and therefore model a priori. Here we assess the potential of Independent Component Analysis (ICA) to detect the presence of unexpected subgroups of participants. To this end, we acquired task-evoked fMRI data on 45 healthy adults using the verb generation (VGEN) task, in which participants are visually presented with the noun of an object of everyday use, and asked to covertly generate a verb describing the corresponding action. As expected, the task elicited activity in a temporo-parieto-frontal network typically found in previous VGEN experiments. We then quantified the contribution of every subject to nine task-related spatio-temporal processes identified by ICA. A cluster analysis of this quantity yielded three subgroups of participants. Differences between the three identified subgroups were distributed in left and right prefrontal, posterior parietal and extrastriate occipital regions. These results could not be explained by differences in sex, age or handedness across the participants. Furthermore, some regions where a significant difference was found between subgroups were not present in the group-level pattern of task-related activity. We discuss the potential application of this approach for characterizing brain activity in different subgroups of patients with neuropsychiatric or neurological conditions.

publication date

  • December 7, 2016

Research

keywords

  • Brain
  • Brain Mapping
  • Speech

Identity

Scopus Document Identifier

  • 85008235222

Digital Object Identifier (DOI)

  • 10.1016/j.cortex.2016.11.017

PubMed ID

  • 28010939

Additional Document Info

volume

  • 86