Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Academic Article uri icon

Overview

abstract

  • Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.

publication date

  • February 15, 2017

Research

keywords

  • DNA Copy Number Variations
  • Gene Expression Profiling
  • Glycolysis
  • Neoplasms

Identity

PubMed Central ID

  • PMC5327725

Scopus Document Identifier

  • 85013986256

Digital Object Identifier (DOI)

  • 10.15252/msb.20167159

PubMed ID

  • 28202506

Additional Document Info

volume

  • 13

issue

  • 2