Biomarkers of Atrial Cardiopathy and Atrial Fibrillation Detection on Mobile Outpatient Continuous Telemetry After Embolic Stroke of Undetermined Source.
Academic Article
Overview
abstract
BACKGROUND: Biomarkers of atrial dysfunction or "cardiopathy" are associated with embolic stroke risk. However, it is unclear if this risk is mediated by undiagnosed paroxysmal atrial fibrillation or flutter (AF). We aim to determine whether atrial cardiopathy biomarkers predict AF on continuous heart-rhythm monitoring after embolic stroke of undetermined source (ESUS). METHODS: This was a single-center retrospective study including all patients with ESUS undergoing 30 days of ambulatory heart-rhythm monitoring to look for AF between January 1, 2013 and December 31, 2015. We reviewed medical records for clinical, radiographic, and cardiac variables. The primary outcome was a new diagnosis of AF detected during heart-rhythm monitoring. The primary predictors were atrial biomarkers: left atrial diameter on echocardiography, P-wave terminal force in electrocardiogram (ECG) lead V1, and P wave - R wave (PR) interval on ECG. A multiple logistic regression model was used to assess the relationship between atrial biomarkers and AF detection. RESULTS: Among 196 eligible patients, 23 (11.7%) were diagnosed with AF. In unadjusted analyses, patients with AF were older (72.4 years versus 61.4 years, P < .001) and had larger left atrial diameter (39.2 mm versus 35.7 mm, P = .03). In a multivariable model, the only predictor of AF was age ≥ 60 years (odds ratio, 3.0; 95% CI, 1.06-8.5; P = .04). CONCLUSION: Atrial biomarkers were weakly associated with AF after ESUS. This suggests that previously reported associations between these markers and stroke may reflect independent cardiac pathways leading to stroke. Prospective studies are needed to investigate these mechanisms.