Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images. Academic Article uri icon

Overview

abstract

  • Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

publication date

  • January 30, 2017

Research

keywords

  • Algorithms
  • Brain
  • Fetus
  • Magnetic Resonance Imaging

Identity

PubMed Central ID

  • PMC5304316

Scopus Document Identifier

  • 85013287795

Digital Object Identifier (DOI)

  • 10.1155/2017/3956363

PubMed ID

  • 28251155

Additional Document Info

volume

  • 2017