High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry. Academic Article uri icon

Overview

abstract

  • The Golgi apparatus is a dynamic organelle, which regulates the vesicular trafficking. While cellular trafficking requires active changes of the Golgi membranes, these are not accompanied by changes in the general Golgi's structure. However, cellular processes such as mitosis, apoptosis and migration require fragmentation of the Golgi complex. Currently, these changes are most commonly studied by basic immunofluorescence and quantified by manual and subjective classification of the Golgi structure in 100-500 stained cells. Several other high-throughput methods exist as well, but those are either complicated or do not provide enough morphological information. Therefore, a simple and informative high content methodology should be beneficial for the study of Golgi architecture. Here we describe the use of high-throughput imaging flow cytometry for quantification of Golgi fragmentation, which provides a simple way to analyze the changes in an automated, quantitative and non-biased manner. Furthermore, it provides a rapid and accurate way to analyze more than 50,000 cells per sample. Our results demonstrate that this method is robust and statistically powerful, thus, providing a much-needed analytical tool for future studies on Golgi dynamics, and can be adapted to other experimental systems.

publication date

  • April 11, 2017

Research

keywords

  • Flow Cytometry
  • Golgi Apparatus
  • High-Throughput Screening Assays

Identity

PubMed Central ID

  • PMC5429768

Scopus Document Identifier

  • 85018775912

Digital Object Identifier (DOI)

  • 10.1038/s41598-017-00909-y

PubMed ID

  • 28400563

Additional Document Info

volume

  • 7

issue

  • 1