PCP and SAX-3/Robo Pathways Cooperate to Regulate Convergent Extension-Based Nerve Cord Assembly in C. elegans. Academic Article uri icon

Overview

abstract

  • Formation and resolution of multicellular rosettes can drive convergent extension (CE) type cell rearrangements during tissue morphogenesis. Rosette dynamics are regulated by both planar cell polarity (PCP)-dependent and -independent pathways. Here we show that CE is involved in ventral nerve cord (VNC) assembly in Caenorhabditis elegans. We show that a VANG-1/Van Gogh and PRKL-1/Prickle containing PCP pathway and a Slit-independent SAX-3/Robo pathway cooperate to regulate, via rosette intermediaries, the intercalation of post-mitotic neuronal cell bodies during VNC formation. We show that VANG-1 and SAX-3 are localized to contracting edges and rosette foci and act to specify edge contraction during rosette formation and to mediate timely rosette resolution. Simultaneous loss of both pathways severely curtails CE resulting in a shortened, anteriorly displaced distribution of VNC neurons at hatching. Our results establish rosette-based CE as an evolutionarily conserved mechanism of nerve cord morphogenesis and reveal a role for SAX-3/Robo in this process.

publication date

  • April 24, 2017

Research

keywords

  • Cell Polarity
  • Morphogenesis
  • Nerve Tissue Proteins
  • Neurons
  • Receptors, Immunologic
  • Signal Transduction

Identity

PubMed Central ID

  • PMC5469364

Scopus Document Identifier

  • 85018818669

Digital Object Identifier (DOI)

  • 10.1016/j.devcel.2017.03.024

PubMed ID

  • 28441532

Additional Document Info

volume

  • 41

issue

  • 2