Enrichment of PI3K-AKT-mTOR Pathway Activation in Hepatic Metastases from Breast Cancer. Academic Article uri icon

Overview

abstract

  • Purpose: Little is known about the molecular signatures associated with specific metastatic sites in breast cancer. Using comprehensive multi-omic molecular profiling, we assessed whether alterations or activation of the PI3K-AKT-mTOR pathway is associated with specific sites of breast cancer metastasis.Experimental Design: Next-generation sequencing-based whole-exome sequencing was coupled with reverse-phase protein microarray (RPPA) functional signaling network analysis to explore the PI3K-AKT-mTOR axis in 32 pretreated breast cancer metastases. RPPA-based signaling data were further validated in an independent cohort of 154 metastatic lesions from breast cancer and 101 unmatched primary breast tumors. The proportion of cases with PI3K-AKT-mTOR genomic alterations or signaling network activation were compared between hepatic and nonhepatic lesions.Results:PIK3CA mutation and activation of AKT (S473) and p70S6K (T389) were detected more frequently among liver metastases than nonhepatic lesions (P < 0.01, P = 0.056, and P = 0.053, respectively). However, PIK3CA mutations alone were insufficient in predicting protein activation (P = 0.32 and P = 0.19 for activated AKT and p70S6K, respectively). RPPA analysis of an independent cohort of 154 tumors confirmed the relationship between pathway activation and hepatic metastasis [AKT (S473), mTOR (S2448), and 4EBP1 (S65); P < 0.01, P = 0.02, and P = 0.01, respectively]. Similar results were also seen between liver metastases and primary breast tumors [AKT (S473) P < 0.01, mTOR (S2448) P < 0.01, 4EBP1 (S65) P = 0.01]. This signature was lost when primary tumors were compared with all metastatic sites combined.Conclusions: Breast cancer patients with liver metastasis may represent a molecularly homogenized cohort with increased incidence of PIK3CA mutations and activation of the PI3K-AKT-mTOR signaling network. Clin Cancer Res; 23(16); 4919-28. ©2017 AACR.

publication date

  • April 26, 2017

Research

keywords

  • Breast Neoplasms
  • Liver Neoplasms
  • Protein Kinases
  • Signal Transduction

Identity

PubMed Central ID

  • PMC5564311

Scopus Document Identifier

  • 85027014093

Digital Object Identifier (DOI)

  • 10.1158/1078-0432.CCR-16-2656

PubMed ID

  • 28446508

Additional Document Info

volume

  • 23

issue

  • 16