The role of timing in the treatment of spinal cord injury.
Review
Overview
abstract
Regeneration failure after primary spinal cord injury (SCI) leads to diverse clinical complications in a severity- and level of SCI-dependent manner. The cost of treating both of them (initial regeneration failure and following complications) would be prohibitive, particularly in less developed nations. The well-recognized circumstances arose from primary SCI include excitotoxicity and inflammation. SCI increases concentrations of extracellular amino acids (EAAs) in the severity-dependent manner and the maximum level of EAAs at the injury site will be reduced by distance from the injury site. Increased concentrations of EAAs and their signaling result in energy and metabolic changes and eventually neurotoxicity. Therefore EAAs play a crucial role in moving towards secondary stage of SCI. There is a close correspondence between severity of SCI and intensity of acute inflammatory response, which includes proinflammatory cytokines (IL-1β, TNF-α, and IL-6) and immune cells (neutrophils, microglia, and mast cells). The communication between microglia and astrocytes mediate formation of astroglial scar. The scar is thought to diminish the spread of inflammation and lesion volume, and on the other side poses an obstacle to achieving axon regeneration. Moreover, mast cells exert an anti-inflammatory role in the ground of injured spinal cord by degradation of proinflammatory mediators, while mast cells-derived histamine may cause excitotoxicity. Therefore research suggests a very double-sword remark about the work of inflammatory mediators in the injured spinal cord. Myelin associated inhibitors (MAIs) are among the growing list of extrinsic inhibitors of neuroregeneration in the injured-CNS. They function via NgR-dependent mechanisms. The time for intervention by NgR antagonists must be fixed according to the expression pattern of this receptor and its dependent MAIs after SCI. Altogether, experimental studies suggest potential benefits of combating EAAs, inflammatory mediators, and MAIs during the first minutes, hours and weeks after SCI, respectively. However, acute inflammation initially induced by SCI tends to be permanent, even at several years after SCI. This supports the notion that paying attention to inflammation must persist through time. The consideration of seconds-dependent state of spinal cord after primary injury is a very therapeutic and also preventive approach against future possible complications. It is thereby possible to propose "timing", which is perfectly practicable throughout the world, as an effective campaign against the final failure of SCI.