Recent studies have shown that several receptor populations in cat visual cortex undergo alterations in their laminar distributions during postnatal development (Shaw et al., 1984a,b; 1986b). These redistributions occur during the first few months of postnatal life, coincident with the physiologically defined critical period for cortical plasticity. In the present communication, we demonstrate that receptor redistributions can be prevented from occurring, or progressing once started, by surgically isolating the visual cortex at appropriate postnatal ages. These data suggest that the maturation of the chemical circuitry of the visual cortex is dependent on factors of extrinsic origin.