Dectin-1 signaling inhibits osteoclastogenesis via IL-33-induced inhibition of NFATc1.
Academic Article
Overview
abstract
Abnormal osteoclast activation contributes to osteolytic bone diseases (OBDs). It was reported that curdlan, an agonist of dectin-1, inhibits osteoclastogenesis. However, the underlying mechanisms are not fully elucidated. In this study, we found that curdlan potently inhibited RANKL-induced osteoclast differentiation and the resultant bone resorption. Curdlan inhibited the expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), the key transcriptional factor for osteoclastogenesis. Notably, dectin-1 activation increased the expression of MafB, an inhibitor of NFATc1, and IL-33 in osteoclast precursors. Mechanistic studies revealed that IL-33 enhanced the expression of MafB in osteoclast precursors and inhibited osteoclast precursors to differentiate into mature osteoclasts. Furthermore, blocking ST2, the IL-33 receptor, partially abrogated curdlan-induced inhibition of NFATc1 expression and osteoclast differentiation. Thus, our study has provided new insights into the mechanisms of dectin-1-induced inhibition of osteoclastogenesis and may provide new targets for the therapy of OBDs.