Role of Molecular Recognition in l-Cystine Crystal Growth Inhibition. Academic Article uri icon

Overview

abstract

  • l-Cystine kidney stones-aggregates of single crystals of the hexagonal form of l-cystine-afflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera-Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.

publication date

  • April 13, 2017

Identity

PubMed Central ID

  • PMC5722434

Scopus Document Identifier

  • 85018970223

Digital Object Identifier (DOI)

  • 10.1021/acs.cgd.7b00236

PubMed ID

  • 29234242

Additional Document Info

volume

  • 17

issue

  • 5