In Search of a Murine Model of Radiation-Induced Periprosthetic Capsular Fibrosis. Academic Article uri icon

Overview

abstract

  • INTRODUCTION: Capsular contracture after breast reconstruction is a morbid complication, occurring in 30.0% to 47.5% of patients undergoing postoperative radiotherapy. Although it is well known that radiation increases rate of capsular contracture, there are few well-established animal models that faithfully replicate standard-of-care clinical practice, that is, prosthesis placement at the time of mastectomy followed by delayed radiotherapy. To better recapitulate current clinical practice, we developed a murine model in which the implant sites were irradiated 10 days postoperatively, rather than at time of surgery. METHODS: Hemispherical implants were created from polydimethylsiloxane and implanted bilaterally in the subcutaneous dorsa of 20 C57Bl/6 mice. Mice were randomized to 5 treatment groups, differing in irradiation dose: 0 to 40 Gy. Ten days postoperatively, irradiation was performed using 250-kVp x-rays (XRAD225Cx, Precision X-ray, North Branford, Conn). In 1 mouse per group, dosimeters were placed subcutaneously to measure the delivered absorbed dose. Thirty-one days postoperatively, the mice were sacrificed and examined grossly, and periprosthetic tissues were removed for histologic analysis of periprosthetic capsule thickness and cellular deposition. RESULTS: Total radiation dose was calculated by the treatment planning software and confirmed by the in vivo dosimeters. Physical examination of the irradiated region demonstrated evidence of local radiation delivery, including circular patterns of hair blanching and thinning directly over the implants. Furthermore, histologic analysis of the irradiated epidermis demonstrated dose-dependent radiation changes including keratin whorls and patches of uneven epidermal thickness. There was no statistically significant difference in capsule thickness among the groups. Mice in the 30 and 40 Gy groups endured complications including shortness of breath, coagulopathy, and death, signs of systemic radiation poisoning. CONCLUSIONS: There was no evidence of increased periprosthetic capsule thickness with localized irradiation, irrespective of dose up to 20 Gy. These results differ from those previously published, which demonstrated increased capsule thickness with 10 Gy irradiation. Given the evidence of local radiation delivery, we believe that the lack of increase in capsule thickness observed in our experiment is a real phenomenon and demonstrate the difficulty in creating an easily reproducible rodent model that mimics the effects of postmastectomy implant-based reconstruction and irradiation.

publication date

  • April 1, 2018

Research

keywords

  • Breast Implantation
  • Breast Neoplasms
  • Disease Models, Animal
  • Implant Capsular Contracture
  • Mastectomy
  • Mice, Inbred C57BL
  • Radiotherapy, Adjuvant

Identity

Scopus Document Identifier

  • 85065020274

Digital Object Identifier (DOI)

  • 10.1097/SAP.0000000000001362

PubMed ID

  • 29481480

Additional Document Info

volume

  • 80

issue

  • 4 Suppl 4