Biomimetic post-capillary venule expansions for leukocyte adhesion studies. Academic Article uri icon

Overview

abstract

  • Leukocyte adhesion and extravasation are maximal near the transition from capillary to post-capillary venule, and are strongly influenced by a confluence of scale-dependent physical effects. Mimicking the scale of physiological vessels using in vitro microfluidic systems allows the capture of these effects on leukocyte adhesion assays, but imposes practical limits on reproducibility and reliable quantification. Here we present a microfluidic platform that provides multiple (54-512) technical replicates within a 15-minute sample collection time, coupled with an automated computer vision analysis pipeline that captures leukocyte adhesion probabilities as a function of shear and extensional stresses. We report that in post-capillary channels of physiological scale, efficient leukocyte adhesion requires erythrocytes forcing leukocytes against the wall, a phenomenon that is promoted by the transitional flow in post-capillary venule expansions and dependent on the adhesion molecule ICAM-1.

publication date

  • June 19, 2018

Research

keywords

  • Biomimetics
  • Cell Adhesion
  • Leukocytes

Identity

PubMed Central ID

  • PMC6008471

Scopus Document Identifier

  • 85048811060

Digital Object Identifier (DOI)

  • 10.1038/s41598-018-27566-z

PubMed ID

  • 29921896

Additional Document Info

volume

  • 8

issue

  • 1