Dual peroxidase and colloidal gold-labeling study of angiotensin converting enzyme and angiotensin-like immunoreactivity in the rat subfornical organ.
Academic Article
Overview
abstract
The cellular relationships between angiotensin converting enzyme (ACE) (EC 3.4.14.1) and angiotensin-like immunoreactivity (AGLI) were examined in the subfornical organ (SFO). Brains from adult rats were fixed by vascular perfusion with 3.75% acrolein and 2% paraformaldehyde. The region containing the SFO was then sectioned on a vibrating microtome. Partially permeabilized sections were immunocytochemically labeled using the peroxidase-antiperoxidase (PAP) or combined PAP and immunogold methods. Goat antiserum to ACE was localized to both non-neuronal and neuronal cells within the SFO. Intense peroxidase immunoreactivity for ACE was associated with the ventricular and basal surface of ependymal cells, the luminal surface of the vascular endothelium, portions of glial membranes exposed to extracellular spaces, and membranous organelles within neuronal processes. Two antisera raised in rabbits against angiotensin II showed peroxidase immunoreactivity within the extracellular spaces and throughout the cytoplasm of numerous axon terminals and a few perikarya and dendrites in the SFO. Axon terminals and dendrites also showed aggregates of AGLI in smooth membranes and vesicles near the plasmalemma. Gold labeling for AGLI was evident in only 6% of the axon terminals and in a smaller number of dendrites containing peroxidase immunoreactivity for ACE. The low incidence of terminals containing both markers appeared to at least partially reflect limited penetration of the 10 nm gold particles. These results provide the first ultrastructural evidence that ACE is associated with the plasmalemma and membranous organelles strategically located for interaction with precursors of angiotensin II or other peptides within the cerebrospinal fluid, extracellular spaces and neurons of the SFO.