Assessing Cerebral Metabolism in the Immature Rodent: From Extracts to Real-Time Assessments. Review uri icon

Overview

abstract

  • Brain development is an energy-expensive process. Although glucose is irreplaceable, the developing brain utilizes a variety of substrates such as lactate and the ketone bodies, β-hydroxybutyrate and acetoacetate, to produce energy and synthesize the structural components necessary for cerebral maturation. When oxygen and nutrient supplies to the brain are restricted, as in neonatal hypoxia-ischemia (HI), cerebral energy metabolism undergoes alterations in substrate use to preserve the production of adenosine triphosphate. These changes have been studied by in situ biochemical methods that yielded valuable quantitative information about high-energy and glycolytic metabolites and established a temporal profile of the cerebral metabolic response to hypoxia and HI. However, these analyses relied on terminal experiments and averaging values from several animals at each time point as well as challenging requirements for accurate tissue processing.More recent methodologies have focused on in vivo longitudinal analyses in individual animals. The emerging field of metabolomics provides a new investigative tool for studying cerebral metabolism. Magnetic resonance spectroscopy (MRS) has enabled the acquisition of a snapshot of the metabolic status of the brain as quantifiable spectra of various intracellular metabolites. Proton (1H) MRS has been used extensively as an experimental and diagnostic tool of HI in the pursuit of markers of long-term neurodevelopmental outcomes. Still, the interpretation of the metabolite spectra acquired with 1H MRS has proven challenging, due to discrepancies among studies, regarding calculations and timing of measurements. As a result, the predictive utility of such studies is not clear. 13C MRS is methodologically more challenging, but it provides a unique window on living tissue metabolism via measurements of the incorporation of 13C label from substrates into brain metabolites and the localized determination of various metabolic fluxes. The newly developed hyperpolarized 13C MRS is an exciting method for assessing cerebral metabolism in vivo, that bears the advantages of conventional 13C MRS but with a huge gain in signal intensity and much shorter acquisition times. The first part of this review article provides a brief description of the findings of biochemical and imaging methods over the years as well as a discussion of their associated strengths and pitfalls. The second part summarizes the current knowledge on cerebral metabolism during development and HI brain injury.

publication date

  • April 16, 2019

Identity

PubMed Central ID

  • PMC6658338

Scopus Document Identifier

  • 85064965546

Digital Object Identifier (DOI)

  • 10.1159/000496921

PubMed ID

  • 30991389

Additional Document Info

volume

  • 40

issue

  • 5-6