Lipids and insulin regulate mitochondrial-derived peptide (MOTS-c) in PCOS and healthy subjects. Academic Article uri icon

Overview

abstract

  • OBJECTIVE: Polycystic ovarian syndrome (PCOS) is a heterogeneous endocrine disorder associated with mitochondrial dysfunction and insulin resistance (IR). MOTS-c, a mitochondrial peptide, promotes insulin sensitivity (IS) through activating AKT and AMPK-dependent pathways. The current study was designed to examine the response of MOTS-c to lipids (intralipid) followed by insulin in PCOS and healthy subjects. METHODS: All subjects underwent 5-hour intralipid/saline infusion with a hyperinsulinemic-euglycaemic clamp in the final 2 hours. Plasma samples were collected to measure circulating MOTS-c using a commercial ELISA kit. Subsequently, this was repeated following an eight-week exercise intervention. RESULTS: Intralipid significantly increased plasma MOTS-c both in controls and PCOS subjects, whilst the insulin infusion blunted the intralipid-induced response seen for both lipids and MOT-c. Intralipid elevated plasma MOTS-c to 232 ± 124% of basal in control (P < 0.01) and to 349 ± 206% of basal in PCOS (P < 0.001) subjects. Administration of insulin suppressed intralipid-induced MOTS-c from 232 ± 124% to 165 ± 97% (NS) in control and from 349 ± 206% to 183 ± 177% (P < 0.05) in PCOS subjects, respectively. Following exercise, intralipid elevated plasma MOTS-c to 305 ± 153% of basal in control (P < 0.01) and to 215 ± 103% of basal in PCOS (P < 0.01) subjects; insulin suppressed intralipid-induced MOTS-c only in controls. CONCLUSIONS: In conclusion, this is the first study to show increased lipid enhanced circulating MOTS-c whilst insulin attenuated the MOTS-c response in human. Further, eight weeks of moderate exercise training did not show any changes in circulating MOTS-c levels in healthy controls and in women with PCOS.

publication date

  • May 15, 2019

Research

keywords

  • Healthy Volunteers
  • Insulin
  • Mitochondrial Proteins
  • Phospholipids
  • Polycystic Ovary Syndrome
  • Soybean Oil

Identity

Scopus Document Identifier

  • 85065962414

Digital Object Identifier (DOI)

  • 10.1111/cen.14007

PubMed ID

  • 31066084

Additional Document Info

volume

  • 91

issue

  • 2