A review of weight loss and sarcopenia in patients with head and neck cancer treated with chemoradiation.
Review
Overview
abstract
Background: Concurrent chemotherapy and radiation (CTRT) improves disease-free survival in locally advanced head and neck cancer but is associated with numerous acute and chronic toxicities resulting in substantial alterations in body mass and composition. We aim to summarize the current evidence on body composition changes experienced by patients undergoing CTRT, examine the impact of these changes on clinical outcomes and address potential interventions aimed at mitigating the loss. Main Body: Loss of 20 % of pre-CTRT weight predicts poorer treatment tolerance and 30-day mortality. While clinical practice focuses on body weight, emerging data indicates that CTRT causes profound adverse changes in lean body mass (sarcopenia). Higher prevalence of sarcopenia predicts poorer disease-free survival as well as overall survival, lower quality of life and functional performance. The magnitude of CTRT-induced sarcopenia is the equivalent to that observed in a decade of aging in a healthy adult. Alterations in body composition are only explained, in part, by decreased caloric intake; other significant predictors include body mass index, stage, and dysphagia. Lifestyle interventions aimed at preventing loss of whole-body and especially lean mass include nutritional counseling, nutritional supplements, dietary supplements and exercise training. Personalized nutritional counseling has been associated with improvement in quality of life, while the benefits of feeding tube placement are inconsistent. There are inconsistently reported benefits of resistance training in this population. Conclusion: Patients with head and neck cancer undergoing CTRT therapy experience dramatic shifts in body composition, including sarcopenia, which can negatively impact clinical outcomes. Efforts to understand the magnitude, clinical importance and mechanisms of sarcopenia are needed to inform a more personalized approach to mitigating the body composition changes associated with CTRT.