Large scale control and programming of gene expression using CRISPR.
Review
Overview
abstract
The control of gene expression in cells and organisms allows to unveil gene to function relationships and to reprogram biological responses. Several systems, such as Zinc fingers, TALE (Transcription activator-like effectors), and siRNAs (small-interfering RNAs), have been exploited to achieve this. However, recent advances in Clustered Regularly Interspaced Short Palindromic Repeats and Cas9 (CRISPR-Cas9) have overshadowed them due to high specificity, compatibility with many different organisms, and design flexibility. In this review we summarize state-of-the art for CRISPR-Cas9 technology for large scale gene perturbation studies, including single gene and multiple genes knock-out, knock-down, knock-up libraries, and their associated screening assays. We feature in particular the combination of these methods with single-cell transcriptomics approaches. Finally, we highlight the application of CRISPR-Cas9 systems in building synthetic circuits that can be interfaced with gene networks to control cellular states.