Artificial Intelligence in the Management of Glioma: Era of Personalized Medicine. Review uri icon

Overview

abstract

  • Purpose: Artificial intelligence (AI) has accelerated novel discoveries across multiple disciplines including medicine. Clinical medicine suffers from a lack of AI-based applications, potentially due to lack of awareness of AI methodology. Future collaboration between computer scientists and clinicians is critical to maximize the benefits of transformative technology in this field for patients. To illustrate, we describe AI-based advances in the diagnosis and management of gliomas, the most common primary central nervous system (CNS) malignancy. Methods: Presented is a succinct description of foundational concepts of AI approaches and their relevance to clinical medicine, geared toward clinicians without computer science backgrounds. We also review novel AI approaches in the diagnosis and management of glioma. Results: Novel AI approaches in gliomas have been developed to predict the grading and genomics from imaging, automate the diagnosis from histopathology, and provide insight into prognosis. Conclusion: Novel AI approaches offer acceptable performance in gliomas. Further investigation is necessary to improve the methodology and determine the full clinical utility of these novel approaches.

publication date

  • August 14, 2019

Identity

PubMed Central ID

  • PMC6702305

Scopus Document Identifier

  • 85071664454

Digital Object Identifier (DOI)

  • 10.3389/fonc.2019.00768

PubMed ID

  • 31475111

Additional Document Info

volume

  • 9