Enrichment and Detection of Clostridium perfringens Toxinotypes in Retail Food Samples. Academic Article uri icon

Overview

abstract

  • Clostridium perfringens (C. perfringens) is a prolific toxin producer and causes a wide range of diseases in various hosts. C. perfringens is categorized into five different toxinotypes, A through E, based on the carriage of four major toxin genes. The prevalence and distribution of these various toxinotypes is understudied, especially their pervasiveness in American retail food. Of particular interest to us are the type B and D strains, which produce epsilon toxin, an extremely lethal toxin suggested to be the environmental trigger of multiple sclerosis in humans. To evaluate the presence of different C. perfringens toxinotypes in various food samples, we developed an easy method to selectively culture these bacteria without the use of an anaerobic container system only involving three culturing steps. Food is purchased from local grocery stores and transported to the laboratory under ambient conditions. Samples are minced and inoculated into modified rapid perfringens media (RPM) and incubated overnight at 37 °C in a sealed, airtight conical tube. Overnight cultures are inoculated onto a bottom layer of solid Tryptose Sulfite Cycloserine (TSC) agar, and then overlaid with a top layer of molten TSC agar, creating a "sandwiched", anaerobic environment. Agar plates are incubated overnight at 37 °C and then evaluated for appearance of black, sulfite-reducing colonies. C. perfringens-suspected colonies are removed from the TSC agar using sterile eye droppers, and inoculated into RPM and sub-cultured overnight at 37 °C in an airtight conical tube. DNA is extracted from the RPM subculture, and then analyzed for the presence of C. perfringens toxin genes via polymerase chain reaction (PCR). Depending on the type of food sampled, typically 15-20% of samples test positive for C. perfringens.

publication date

  • October 18, 2019

Research

keywords

  • Bacterial Toxins
  • Clostridium perfringens
  • Food Microbiology

Identity

Scopus Document Identifier

  • 85074433454

Digital Object Identifier (DOI)

  • 10.3791/59931

PubMed ID

  • 31680665

Additional Document Info

issue

  • 152