Less iatrogenic soft-tissue damage utilizing robotic-assisted total knee arthroplasty when compared with a manual approach: A blinded assessment. Academic Article uri icon

Overview

abstract

  • OBJECTIVES: The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty (RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are limited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this technique. The objective of this cadaver study was to compare the extent of soft-tissue damage sustained through a robotic-assisted, haptically guided TKA (RATKA) versus a manual TKA (MTKA) approach. METHODS: A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal-Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage between RATKA and MTKA cases. RESULTS: Significantly less damage occurred to the PCLs in the RATKA versus the MTKA specimens (p < 0.001). RATKA specimens had non-significantly less damage to the deep medial collateral ligaments (p = 0.149), iliotibial bands (p = 0.580), poplitei (p = 0.248), and patellar ligaments (p = 0.317). The remaining anatomical structures had minimal soft-tissue damage in all MTKA and RATKA specimens. CONCLUSION: The results of this study indicate that less soft-tissue damage may occur when utilizing RATKA compared with MTKA. These findings are likely due to the enhanced preoperative planning with the robotic software, the real-time intraoperative feedback, and the haptically bounded saw blade, all of which may help protect the surrounding soft tissues and ligaments.Cite this article: Bone Joint Res 2019;8:495-501.

publication date

  • November 2, 2019

Identity

PubMed Central ID

  • PMC6825049

Scopus Document Identifier

  • 85077961680

Digital Object Identifier (DOI)

  • 10.1302/2046-3758.810.BJR-2019-0129.R1

PubMed ID

  • 31728189

Additional Document Info

volume

  • 8

issue

  • 10