Abnormal microarchitecture and stiffness in postmenopausal women with isolated osteoporosis at the 1/3 radius. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Postmenopausal women with isolated osteoporosis at the 1/3 radius (1/3RO) present a therapeutic dilemma. Little is known about whether these patients have generalized skeletal fragility, and whether this finding warrants treatment. The aim of this study was to investigate the biochemical and microarchitectural phenotype of women with 1/3RO compared to women with classic postmenopausal osteoporosis by DXA at the spine and hip (PMO), and controls without osteoporosis at any site. METHODS: This cross-sectional study enrolled 266 postmenopausal women, who were grouped according to densitometric pattern. Subjects had serum biochemistries, areal BMD (aBMD) measured by DXA, trabecular and cortical vBMD, microarchitecture, and stiffness by high resolution peripheral QCT (HR-pQCT, voxel size ~82 μm) of the distal radius and tibia. RESULTS: Mean age was 68 ± 7 years. DXA T-Scores reflected study design. By HR-pQCT, 1/3RO had abnormalities at both radius and tibia compared to controls: lower total, cortical and trabecular vBMD, cortical thickness and trabecular number, higher trabecular separation and heterogeneity, and lower whole bone stiffness. In contrast, the magnitude and pattern of abnormalities in vBMD, microarchitecture and stiffness in 1/3RO were similar to those in PMO; the difference compared to controls was similar among the two groups. Serum calcium, creatinine, parathyroid hormone, 25-hydroxyvitamin D, and 24-hour urine calcium did not differ. CONCLUSIONS: Although aBMD appeared relatively preserved at the spine and hip by DXA, women with 1/3RO had significant microarchitectural and biomechanical deficits comparable to those in women with typical PMO. Further study is required to guide treatment decisions in this population.

publication date

  • December 20, 2019

Research

keywords

  • Osteoporosis, Postmenopausal
  • Radius

Identity

PubMed Central ID

  • PMC8853460

Scopus Document Identifier

  • 85076858415

Digital Object Identifier (DOI)

  • 10.1016/j.bone.2019.115211

PubMed ID

  • 31870633

Additional Document Info

volume

  • 132