PD-L1 Testing for Lung Cancer in 2019: Perspective From the IASLC Pathology Committee. Review uri icon

Overview

abstract

  • The recent development of immune checkpoint inhibitors (ICIs) has led to promising advances in the treatment of patients with NSCLC and SCLC with advanced or metastatic disease. Most ICIs target programmed cell death protein 1 (PD-1) or programmed death ligand 1 (PD-L1) axis with the aim of restoring antitumor immunity. Multiple clinical trials for ICIs have evaluated a predictive value of PD-L1 protein expression in tumor cells and tumor-infiltrating immune cells (ICs) by immunohistochemistry (IHC), for which different assays with specific IHC platforms were applied. Of those, some PD-L1 IHC assays have been validated for the prescription of the corresponding agent for first- or second-line treatment. However, not all laboratories are equipped with the dedicated platforms, and many laboratories have set up in-house or laboratory-developed tests that are more affordable than the generally expensive clinical trial-validated assays. Although PD-L1 IHC test is now deployed in most pathology laboratories, its appropriate implementation and interpretation are critical as a predictive biomarker and can be challenging owing to the multiple antibody clones and platforms or assays available and given the typically small size of samples provided. Because many articles have been published since the issue of the IASLC Atlas of PD-L1 Immunohistochemistry Testing in Lung Cancer, this review by the IASLC Pathology Committee provides updates on the indications of ICIs for lung cancer in 2019 and discusses important considerations on preanalytical, analytical, and postanalytical aspects of PD-L1 IHC testing, including specimen type, validation of assays, external quality assurance, and training.

authors

publication date

  • December 20, 2019

Research

keywords

  • Carcinoma, Non-Small-Cell Lung
  • Lung Neoplasms

Identity

Scopus Document Identifier

  • 85082097133

Digital Object Identifier (DOI)

  • 10.1016/j.jtho.2019.12.107

PubMed ID

  • 31870882

Additional Document Info

volume

  • 15

issue

  • 4