Factors Related to User Ratings and User Downloads of Mobile Apps for Maternal and Infant Health: Cross-Sectional Study.
Academic Article
Overview
abstract
BACKGROUND: Mobile health apps related to maternal and infant health (MIH) are prevalent and frequently used. Some of these apps are extremely popular and have been downloaded over 5 million times. However, the understanding of user behavior and user adoption of these apps based on consumer preferences for different app features and categories is limited. OBJECTIVE: This study aimed to examine the relationship between MIH app characteristics and users' perceived satisfaction and intent to use. METHODS: The associations between app characteristics, ratings, and downloads were assessed in a sample of MIH apps designed to provide health education or decision-making support to pregnant women or parents and caregivers of infants. Multivariable linear regression was used to assess the relationship between app characteristics and user ratings, and ordinal logistic regression was used to assess the relationship between app characteristics and user downloads. RESULTS: The analyses of user ratings and downloads included 421 and 213 apps, respectively. The average user rating was 3.79 out of 5. Compared with the Apple App Store, the Google Play Store was associated with high user ratings (beta=.33; P=.005). Apps with higher standardized user ratings (beta=.80; P<.001), in-app purchases (beta=1.12; P=.002), and in-app advertisements (beta=.64; P=.02) were more frequently downloaded. Having a health care organization developer as part of the development team was neither associated with user ratings (beta=-.20; P=.06) nor downloads (beta=-.14; P=.63). CONCLUSIONS: A majority of MIH apps are developed by non-health care organizations, which could raise concern about the accuracy and trustworthiness of in-app information. These findings could benefit app developers in designing better apps and could help inform marketing and development strategies. Further work is needed to evaluate the clinical accuracy of information provided within the apps.