Strain in the lateral ligaments of the ankle. Academic Article uri icon

Overview

abstract

  • Strain was measured in the normal anterior talofibular ligament (ATF) and the calcaneofibular ligament (CF) using Hall effect strain transducers in five cadaveric ankles. These measurements were made in both ligaments with the ankle in neutral position and with the foot moving from 10 degrees dorsiflexion to 40 degrees plantarflexion in an apparatus that permits physiologic motion. The ankle ligaments were then tested with the foot placed in six different positions that combined supination, pronation, external rotation, and internal rotation. In the neutral position, through a range of motion of 10 degrees dorsiflexion to 40 degrees plantarflexion, the anterior talofibular ligament underwent an increasing strain of 3.3%. No significant strain increase was found with internal rotation. The only significant difference from the strains at the neutral position was in external rotation, which decreased strain 1.9%. In all positions, increased strain occurred with increased plantarflexion. The calcaneofibular ligament was essentially isometric in the neutral position throughout the flexion arc. The calcaneofibular ligament strain was significantly increased by supination and external rotation. However, with increasing plantarflexion in these positions, the strain in the calcaneofibular ligament decreased. Therefore, plantarflexion has a relaxing effect on the calcaneofibular ligament. Thus, the anterior talofibular and calcaneofibular ligaments are synergistic, such that when one ligament is relaxed, the other is strained and vice versa.

publication date

  • October 1, 1988

Research

keywords

  • Ankle Joint
  • Ligaments, Articular

Identity

Scopus Document Identifier

  • 0023812606

PubMed ID

  • 3224901

Additional Document Info

volume

  • 9

issue

  • 2