Heparanase-The Message Comes in Different Flavors. Article uri icon

Overview

abstract

  • Two decades following the cloning of the heparanase gene, the significance of this enzyme for tumor growth and metastasis cannot be ignored. Compelling pre-clinical and clinical evidence tie heparanase with all steps of tumor formation namely, initiation, growth, metastasis, and chemo resistance, thus confirming and significantly expanding earlier observations that coupled heparanase activity with the metastatic capacity of tumor cells. This collective effort has turned heparanase from an obscure enzyme to a valid target for the development of anti-cancer drugs, and led basic researchers and biotech companies to develop heparanase inhibitors as anti-cancer therapeutics, some of which are currently examined clinically. As expected, the intense research effort devoted to understanding the biology of heparanase significantly expanded the functional repertoire of this enzyme, but some principle questions are still left unanswered or are controversial. For example, many publications describe increased heparanase levels in human tumors, but the mechanism underlying heparanase induction is not sufficiently understood. Moreover, heparanase is hardly found to be increased in many studies utilizing methodologies (i.e., gene arrays) that compare tumors vs (adjacent) normal tissue. The finding that heparanase exert also enzymatic activity-independent function significantly expands the mode by which heparanase can function outside, but also inside the cell. Signaling aspects, and a role of heparanase in modulating autophagy are possibly as important as its enzymatic aspect, but these properties are not targeted by heparanase inhibitors, possibly compromising their efficacy. This Book chapter review heparanase function in oncology, suggesting a somewhat different interpretation of the results.

publication date

  • January 1, 2020

Research

keywords

  • Glucuronidase
  • Neoplasms

Identity

Scopus Document Identifier

  • 85083271973

Digital Object Identifier (DOI)

  • 10.1007/978-3-030-34521-1_9

PubMed ID

  • 32274713

Additional Document Info

volume

  • 1221