Increasing complexity of NLRP3 inflammasome regulation. Review uri icon

Overview

abstract

  • Inflammasomes are multiprotein complexes that assemble upon detection of danger signals to activate the inflammatory enzyme caspase-1, trigger secretion of the highly proinflammatory cytokine IL-1β, and induce an inflammatory cell death called pyroptosis. Distinctiveness of the nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3) inflammasome resides in the diversity of molecules that induce its activation, indicating a certain intricacy. Furthermore, besides the canonical activation of NLRP3 in response to various stimuli, caspase-11-dependent detection of intracellular LPS activates NLRP3 through a noncanonical pathway. Several aspects of the NLRP3 inflammasome are not characterized or remain unclear. In this review, we summarize the different modes of NLRP3 activation. We describe recent insights into post-translational and cellular regulation that confer further complexity to NLRP3 inflammasomes.

publication date

  • June 12, 2020

Research

keywords

  • Inflammasomes
  • NLR Family, Pyrin Domain-Containing 3 Protein

Identity

Scopus Document Identifier

  • 85086329777

Digital Object Identifier (DOI)

  • 10.1002/JLB.3MR0520-104RR

PubMed ID

  • 32531835

Additional Document Info

volume

  • 109

issue

  • 3