A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin.
Academic Article
Overview
abstract
Lactic acid bacteria (LAB) are commonly used in soymilk fermentation to improve health-related functionality, but their contribution to sensory qualities is less valued. We characterized Lactobacillus harbinensis M1, Lactobacillus mucosae M2, Lactobacillus fermentum M4, Lactobacillus casei M8 and Lactobacillus rhamnosus C1 from naturally-fermented tofu whey, along with Streptococcus thermophilus ST3 from kefir XPL-1 fermented soymilk, to investigate their potential as starter cultures of fermented soymilk. They were characterized for antibiotic susceptibility, probiotic potential and their performance as starter cultures. All the LABs showed sensitivity to the tested antibiotics. L. casei M8 had strongest tolerance to synthetic gastrointestinal juice (<1.0 log CFU/mL loss), as well as antagonistic effects towards five food-borne pathogens. GC/MS analysis showed that L. harbinensis M1 produced significantly higher abundance (P < 0.05) of 2,3-butanedione (2.45 ppm) and acetoin (44.30 ppm), thus improving the overall sensory acceptability of fermented soymilk. The coding genes for the synthesis of 2,3-butanedione/acetoin (alsS, alsD, butA) were predicted from the whole-genome. A co-culture of L. harbinensis M1 and L. casei M8 produced a fermented soymilk product with both markedly improved flavor and good probiotic potential. It appears that L. harbinensis M1 has much potential for improving the organoleptic properties of fermented soymilk.