Sodium zirconium cyclosilicate increases serum bicarbonate concentrations among patients with hyperkalaemia: exploratory analyses from three randomized, multi-dose, placebo-controlled trials. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Sodium zirconium cyclosilicate (SZC) binds potassium and ammonium in the gastrointestinal tract. In addition to serum potassium reduction, Phase 2 trial data have shown increased serum bicarbonate with SZC, which may be clinically beneficial because maintaining serum bicarbonate ≥22 mmol/L preserves kidney function. This exploratory analysis examined serum bicarbonate and urea, and urine pH data from three SZC randomized, placebo-controlled Phase 3 studies among patients with hyperkalaemia [ZS-003 (n = 753), HARMONIZE (n = 258) and HARMONIZE-Global (n = 267)]. METHODS: In all studies, patients received ≤10 g SZC 3 times daily (TID) for 48 h to correct hyperkalaemia, followed by randomization to maintenance therapy with SZC once daily (QD) versus placebo for ≤29 days among those achieving normokalaemia. RESULTS: Significant dose-dependent mean serum bicarbonate increases from baseline of 0.3 to 1.5 mmol/L occurred within 48 h of SZC TID in ZS-003 (all P < 0.05), which occurred regardless of chronic kidney disease (CKD) stage. Similar acute increases in HARMONIZE and HARMONIZE-Global were maintained over 29 days. With highest SZC maintenance doses, patient proportions with serum bicarbonate <22 mmol/L fell from 39.4% at baseline to 4.9% at 29 days (P = 0.005) in HARMONIZE and from 87.9% to 70.1%, (P = 0.006) in HARMONIZE-Global. Path analyses demonstrated that serum urea decreases (but not serum potassium or urine pH changes) were associated with SZC effects on serum bicarbonate. CONCLUSIONS: SZC increased serum bicarbonate concentrations and reduced patient proportions with serum bicarbonate <22 mmol/L, likely due to SZC-binding of gastrointestinal ammonium. These SZC-induced serum bicarbonate increases occurred regardless of CKD stage and were sustained during ongoing maintenance therapy.

publication date

  • April 26, 2021

Research

keywords

  • Silicates

Identity

PubMed Central ID

  • PMC8075377

Scopus Document Identifier

  • 85094951839

Digital Object Identifier (DOI)

  • 10.1093/ndt/gfaa158

PubMed ID

  • 32588050

Additional Document Info

volume

  • 36

issue

  • 5