Active Robotic Total Knee Arthroplasty (TKA): Initial Experience with the TSolution One ® TKA System.
Academic Article
Overview
abstract
Several recent advances, including the use of robotic devices, have been explored to improve outcomes in total knee arthroplasty (TKA). The TSolution One ® Total Knee Application (THINK Surgical, Inc., Fremont, CA, USA) introduces an active robotic device that supports an open implant platform and CT-based preoperative planning workflow, and requires minimal surgeon intervention for making bone cuts. Our experience was part of a multi-center, prospective, non-randomized trial assessing the safety and effectiveness of this active robotic system for TKA. Each patient underwent a preoperative CT-scan, which was uploaded to proprietary planning software. The surgeon reviewed the software-generated 3D digital model, selected the appropriate implants and generated a final preoperative plan. Intra-operatively, a standard medial parapatellar approach was used. The leg was then rigidly attached to the robot via fixation pins, and registration markers were placed in the tibia and femur. Landmark registration was performed to inform the robot of the knee's position in space and to confirm the robot's ability to execute the preoperative plan. Next, the robot performed femoral and tibial cuts using a cutter in a sequential fashion along a defined cut-path. The robot was then removed from the operative field and the surgeon completed the procedure by removing marginal bone and performing final balancing and implantation in the usual fashion. The TSolution One® Total Knee Application is a computer-assisted device that potentially allows a surgeon to make more accurate cuts and to determine optimal implant position based on the patient's specific anatomy. It is the only active robotic system currently available. In this manuscript, we describe the operative technique and workflow involved in performing this surgery and offer insight on optimizing safety and efficiency as we introduce new technologies to the operating theater. We also present two cases performed by the senior author to further demonstrate technical aspects of the procedure.