Alignment and quantification of ChIP-exo crosslinking patterns reveal the spatial organization of protein-DNA complexes. Academic Article uri icon

Overview

abstract

  • The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.

publication date

  • November 18, 2020

Research

keywords

  • Chromatin Immunoprecipitation
  • DNA-Binding Proteins
  • Exonucleases
  • RNA, Transfer
  • Ribosomal Proteins
  • Sequence Alignment
  • Transcription Factors

Identity

PubMed Central ID

  • PMC7672471

Scopus Document Identifier

  • 85096361938

Digital Object Identifier (DOI)

  • 10.1093/nar/gkaa618

PubMed ID

  • 32747934

Additional Document Info

volume

  • 48

issue

  • 20